本文在全面考慮裂紋擴展過程中纖維較真實的橋聯和拔出兩種增韌機理的基礎上,對裂紋尖端附近(裂紋尾區)存在多根橋聯纖維所引起的裂紋阻滯效應進行了研究。重點是在裂紋尾區同時考慮橋聯和拔出這兩種增韌機理,建立了研究纖維對裂紋阻滯效應的理論模型,推導出裂紋尾區多根纖維的橋聯與拔出對裂紋擴展阻滯效應的較為簡單、實用的解析計算公式,克服了現有對橋聯增韌效應分析中需要進行復雜的離散、關聯和迭代計算的不足。并結合具體的纖維增強復合材料算例分析了多種參數對裂紋擴展的影響。
理論分析模型考慮一個含有中心穿透裂紋、由纖維增強復合材料組成的無限大薄板,裂紋靠近裂尖部分存在橋聯纖維。設無限大薄板中裂紋初始缺陷長度為2S0,裂紋長度為2S,受遠場均勻分布的拉力0作用,如示。
在均勻外力0作用下,若纖維基體界面結合較弱,將發生界面的脫粘或滑移,導致基體中裂紋進一步擴展,在裂紋尾區存在完好纖維的橋聯及破斷纖維的拔出,起到橋聯增韌和拔出增韌的作用。
裂紋橋聯區模型在本文所提出的增韌分析模型中,裂紋尾區未斷的橋聯纖維的橋聯閉合增韌效果可用集中力i表示,如所示,而尾區中斷裂纖維的增韌效果用拔出力j表示。
橋聯區纖維分布示意圖對于線彈性材料,在單向拉伸外力0和橋聯纖維共同作用下的無限大裂紋板的裂尖強度因子為:K=K0-Kb-Kp(1)其中:K0為遠場均勻拉力0產生的應力強度因子,且K0=0s;Kb為各橋聯纖維等效集中力i產生的應力強度因子的總和;Kp為各破斷拔出的纖維所產生的應力強度因子的總和。
裂紋尾區中第i根纖維產生的應力強度因子為:Kbi=ir2s2s-bibi=(ir2)2bi-1s(2)式(2)中i為第i根纖維的等效橋聯力,且:i=hi(3)式(3)中系數<4>=2Ef1+EfVfEmVmr12,hi為第i根纖維處裂紋張開的位移。式(2)中的bi為第i根纖維至裂尖的距離,如所示。下面用近似處理方法計算每根纖維的bi值。
在外力0作用下,裂紋中心處表面張開的位移為:0=40SEmVm+EfVf(4)式(4)中Em和Ef、Vf分別為基體和纖維的彈性模量及體積比。
作為近似計算,取厚度為纖維直徑的無限大薄板,則其中纖維的體積比近似用中的各纖維體積和與三角形薄板體積比來表示,即有:r2(h1+h2++hn)(12)0(s-s0)2r=Vf(5)式(5)中r為纖維的半徑。由式(5)可求出裂紋尾區所包含的纖維數為:n=s-s0)Vf2r-1(6)進一步,第i根纖維至裂尖的距離可表示為:bi=is-s0n(7)至此,式(1)中尾區所有橋聯纖維的橋聯力引起的應力強度因子的總和可表示為:Kb=ni=1Kbi=ni=1r2i0ns2nsi(s-s0)-1(8)考慮纖維拔出產生的對裂紋擴展的阻滯效應,在裂紋尾區纖維中,當其中某根纖維(如第j根)中的拔出拉應力j達到其斷裂強度s時即發生斷裂拔出,則:j=hj=j0n=s(9)由此可得:j=n0s2(10)式(10)表示:裂紋尾區中第j、j+1、、n根纖維將會發生斷裂拔出,這部分纖維的阻滯效應要用拔出力來計算,而第1,2,j-1根纖維的阻滯效應要用橋聯力來計算。
由剪滯原理可知,斷裂纖維的拔出力j滿足關系:(r)2j=(2rhj)(11)式(11)中hj為纖維平均拔出長度,本文假設hj12hj,因此有:j=j0nr(12)類似前面Kb的推導,各破斷拔出的纖維所產生的應力強度因子的總和Kp為:Kp=nj=1Kpi=nj=1j0rns2nsj(s-s0)-1(13)
綜合上面的分析,同時考慮纖維的橋聯和拔出機理,無限大裂紋板的裂尖強度因子為:K=0s-j-1i=1r2i0ns2nsi(s-s0)-1-nj=1j0rns2nsj(s-s0)-1(14)式(14)不僅揭示了纖維的阻滯作用機理及阻滯程度,同時提供了簡單可靠的定量計算的途徑;在已知纖維增強復合材料基本微結構和性能參數的情況下,通過式(14)可以分析各參數變化對裂紋擴展阻滯效應大小的影響。
[1][2]下一頁>>
相關信息 







推薦企業
推薦企業
推薦企業