3結論
3.1通過紅外光譜分析,證實了BTCA與粘膠纖維之間發(fā)生了酯化反應。
3.2隨著BTCA濃度增加,-COOH轉化率先增大后減小,當BTCA濃度為8%時,達到最大值49.53%;溫度由150℃升高到210℃時,-COOH轉化率由6.66%增加到61.83%;時間由1 min延長到4 min,-COOH轉化率由29.29%增加到52.47%。因此,升高交聯溫度和延長交聯時間可以使得BTCA與粘膠纖維較充分地發(fā)生酯化反應,大大提高-COOH轉化率。
3.3隨著交聯溫度升高,交聯時間延長,BTCA濃度增大,粘膠纖維的濕模量逐漸增大;經質量百分比濃度為8%的BTCA,在180℃下交聯3 min后,粘膠纖維的濕模量為15.28 cN/dtex,濕斷裂強度達到最大值,提高率為23.73%。
參考文獻
[1]Charlies Q.Yang,Xilie Wang,In-Sook Kang.Ester Crosslinking of Cotton Fabric by Carboxylic Acids and Citric
Acid[J].Textile.Res.J.,1997,67(5):334-342.
[2]崔淑玲,宋心遠.纖維交聯劑及其應用[J].印染,2004,(13):38-43.
[3
Charlies Q.Yang,Xilie Wang,Yun Lu.Infrared Spectroscopy Studies of Cycle Anhydrides as Intermediates for Ester Crosslinking of Cotton Cellulose by Polycarboxylic Acides.IV.In Situ Free Radical Copolymerization of Maleic Acid and Itaconic Acid on Cotton[J].J.Appl.Polym.Sci.,2000,75(1):327-336.
[4]胡遜.多羧酸與纖維素纖維酯化反應機理和檸檬酸整理品的性能[D].東華大學碩士論文集,2001:39-82.
[5]Charlies Q.Yang.Evaluating Ester Crosslinking of Cotton Fabric by a Polycarboxylic Acid Using Acid-Base
Titration[J].Textile Res.J.,2000,70(7):615–620.
[6]Charlies Q.Yang.Infrared Spectroscopy Studies of the Cyclic Anhydride as the Intermediate for the Ester Crosslinking of Cotton Cellulose by Polycarboxylic Acids.I.Identification of the Cyclic Anhydride Intermediate[J].J.Polym.Sci.,1993,31(5):1573–1193.
[7]Xiaohong Gu,Charlies Q.Yang.FTIR Spectroscopy Study of the Formation of Cyclic Ahydride Intermediates of
Polycarboxylic Acids Catalyzed by Sodium Hypophosphite[J].Textile Res.J.,2000,70(1):64-70.
[8]方桂珍,蘇磊.溫度對多元羧酸與木材交聯反應的影響[J].東北林業(yè)大學學報,1998,26(5):53-55.
<<上一頁[1][2][3][4][5][6]
相關信息 







推薦企業(yè)
推薦企業(yè)
推薦企業(yè)